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This paper deals with two main problems concerning flow in curved alluvial 
channels. First, the large-scale bottom geometry that develops through the 
interaction of flow and sediment motion is determined. Second, experiments in 
an annular flume indicate that the bed is unstable and that this particular insta- 
bility leads to the formation of a certain number of scour holes. This is explained 
by a linear stability analysis. 

1. Introduction 
A characteristic feature of the mechanics of alluvial channels is that the bed 

is self-formed by the interaction of flow and sediment motion. The large amount 
of theoretical and experimental work on flow in straight channels has been 
summarized in several books, such as those of Raudkivi (1967), Graf (1971) and 
Larras (1972). The flow in curved channels, river bends or meanders has attracted 
considerably less attention. In  the case of prescribed bottom geometry, the flow 
may be described by methods summarized by Rozovskii (1961). The influence 
of channel curvature on flow resistance and the sediment transport rate has been 
investigated experimentally by Zimmermann & Kennedy (1973), while the 
development of bottom geometry has been studied by Hooke (1974). In  a re- 
cent dissertation, Zimmermann (1974) has discussed the flow and bed instability 
in a channel bend and arrived at  results in some respects similar t o  those presented 
below, but using a different approach. Apart from this, little work has been done 
in this field from the theoretical side despite the fact that, in practice, curved 
and meandering streams are more common than straight ones. 

In  the investigation described in this paper, the aim was to create a flow with 
the simplest possible boundary conditions. The experiments were carried out 
in a closed annular flume with rectangular cross-section; see figure 5. The bot- 
tom was covered with a coarse granular material consisting of uniform 3 mm 
plastic particles with a specific gravity of 1.4 g/cm3. The flow was brought about 
by rotation of the cover and was consequently of the Couette type, but for two 
reasons considerably more complicated than plane Couette flow: (i) as the flow 
took place in a curved channel, it  became helical and (ii) the bed was not plane 
and horizontal but approached some surface of revolution, depending on the 
interaction of the flow and sediment motion. 

As will be demonstrated, there was a third and more complex difficulty, viz. 
that such a bed is usually unstable and breaks up, forming a certain (integer) 
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number of undulations. As long as the amplitude of these sand waves is small, 
it grows exponentially with time and the perturbation is very regular and sinu- 
soidal. As the amplitude becomes larger, the whole pattern becomes irregular 
and approaches a pseudo-steady situation where the sand waves exhibit many 
of the stochastic features characteristic of ripples and dunes in straight channels. 
There are, however, some very obvious differences between the sand-wave 
formation in a curved flume and that in a straight flume. First, it is remarkable 
that, for a curved flume, in the early stages of development the sand waves are 
very nearly sinusoidal (in the flow direction), while dunes and ripples are almost 
triangular in shape right from the beginning. The mature sand waves in a curved 
flume have the character of migrating scour holes, as described by Zimmermann 
(1974), but the steep slope is not always found on the lee side of the wave as it is 
in straight channels. 

The theoretical analysis is carried out in two steps: the calculation of the basic 
flow (when the sand bottom is a surface of revolution) and the stability analysis, 
which predicts whether or not a certain regular perturbation will increase or 
decrease. In  the following analysis, it is assumed that the channel depth is small 
compared with its width. 

2. The three-dimensional Couette flow 
Steady and uniform flow in channel bends may be calculated by the methods 

presented in the monograph by Rozovskii (1961). One of the basic problems in 
three-dimensional flow of this type is that the distribution of the centrifugal 
force over a vertical cross-section is non-uniform and hence cannot be adequately 
balanced by the uniformly distributed pressure gradient, with the result that 
the flow becomes helical. 

The flow is most conveniently described in polar co-ordinates, as indicated in 
figure 1. If the radius of curvature is large compared with the depth and the 
depth variation is moderate, the flow equations may be written in the form 

.o/p = sav,laz, (1) 

- -=  4 ---(gh)+&-)= a a avT - 9 - + -  ah a rT 
7. ar ar a,(,). 

where r,, is the bed shear stress, p the fluid density, E the eddy viscosity, g the 
acceleration due to gravity and h the piezometric level. Equation (1) expresses 
the fact that the shear stress ro  is transferred from the moving upper plate t o  
the bottom of the channel without a change in magnitude. Equation (2) ex- 
presses the fact that the difference between the centrifugal and the pressure 
forces is balanced by means of the radial shear-stress component rT. 

Before the equations can be solved, it is necessary to specify the value of the 
eddy viscosity E .  The most natural procedure is to  adapt the expression suggested 
by Reichardt (1959) to ordinary turbulent Couette flow: 

E = O*4ufZ(I -z/?J), (3) 
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(a) ( b )  
FIGURE 1. Definition sketch. (a)  Plan view and (b)  cross-section. 

where 0.4 is the K&rmBn universal constant and y is the local depth, as indicated 
in figure 1. Uf is the friction velocity, defined as 

Uf = (TO/P)+. (4) 
After insertion of (3) and (4), (1) is easily integrated: 

where 5 = z/y and C is a constant that must be determined from the boundary 
condition a t  the bed. Because of the large sediment size, this condition is that 
the distribution near the bed must approach the general velocity distribution 
for turbulent flow in hydraulically rough pipes. As (5) gives a logarithmic distri- 
bution, the condition will be satisfied if it is required that the velocity vanishes 
at  a height &kb above the theoretical bed level, where kb is the equivalent sand 
roughness of the bed. This gives the equation 

The upper plate is assumed to rotate with angular speed B. An expression for 
its velocity is obtained if we take z = y-& where k, is the roughness of the 
plate: 

In  fact, the upper plate was not rough, and hence the first term in the brackets 
must be replaced by the expression for smooth walls: 

where v is the kinematic viscosity of the water. Equation (7) may be used to 
calculate the shear stress exerted by the upper plate for a given angular speed, 
provided that kb is known. In  the present case, kb was estimated to be about 
6 mm, but since a logarithm is a slowly varying function, the result is not sensi- 
tive to errors in this estimate. 

10-2 
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Knowing the distribution (6) of vB it is now possible to perform an integration 
of ( 2 )  and thus determine the magnitude and distribution of the radial velocity 
component v,. Substituting vg = V, f (c) and integrating once leads to 

where C is a constant of integration to be determined later. Now, introducing 
the expression 

and integrating once more, it is found that 

where H ( c )  denotes the function 

The constants C and C, are determined by the following boundary conditions. 

that 
(i) According to Rozovskii (1961), the boundary condition at  a rough wall is 

TJ7o = VrIvo (10) 

should be valid for points near the wall. This condition is seen to be fulfilled when 

c, = 772111 CY 3% -. 
f ICb 

It may be noted that the same expression for C, is arrived at if we use the condi- 
tion that v, shall vanish at  a distance &kb above the bed level, as was required 

(ii) For a smooth wall, Rozovskii demonstrates that the condition is 7, = 0 
for vg. 

close to the wall. Hence putting 5 = 1 and rr = 0 in (8) gives a relation for C: 

Finally, the last term in this expression is determined from the condition that 
the net flux through a vertical cross-section must vanish in the case of steady 
flow : 

v,d5 = 0. s: 
The calculated distributions of the tangential and radial velocity components 

are given in figure 2. The finite value ofv, a t  the upper wall is of course unrealistic. 
The true condition is that vr decreases rapidly through the viscous sublayer and 
becomes zero at the wall. 

Now it is possible to calculate the angle S by which the shear-stress vector at  
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FIGURE 2. Distribution of tangential and radial velocity components. 

the bed deviates from the mean flow direction. The value of 6 is obtained from 

tan6 = rJr0 = v,lve. 

For the particular flow under consideration, (8) gives an expression of the form 

(10): 

tan6 = 21y/r, (11) 

where the coefficient, in principle, depends on the wall roughness. This depen- 
dence is very weak, however. 

3. The basic flow 
The next part of the problem is to  determine the corresponding shape of the 

sand bed, assuming equilibrium and that the shear stress is sufficiently large to 
ensure sediment motion over the entire cross-section. In  other words, the depth 
y used above varies with the distance r ,  and we are looking for the particular 
variation that will satisfy the continuity equation for the sediment, as derived 
below. 

To this end, it is necessary first to consider the motion of bed particles in 
channels with a small transverse slope a; see figure 3. The direction of the shear 
stress is assumed to be nearly longitudinal and equal to the local flow direction 
close to the bed. Owing to the helicity it may, however, deviate from the direction 
of the mean flow by the angle S, as explained above. Because of gravity, a migrat- 
ing particle will tend to move downhill, hence following a path that deviates by 
some small angle from the flow direction. The problem is to determine the angle 
9 between the particle path and the bed shear stress. 

The balance of the longitudinal forces on a single sediment particle is described 
by the equation 

F’= (W-E’)cosatan$, 
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Direction of shear stress 

FIGURE 3. Particle moving on a plane with a transverse slope. 

where FD and FL are the drag and lift forces on the particle, respectively, W 
is its submerged weight and q5 is the dynamic friction angle. For small sediment 
transport rates, the velocity of the sediment particles is small aompared with the 
flow velocity near the bed, as demonstrated by Luque (1974). Hence in this 
case the force on a particle will have a transverse component 

( W -  F’) sin a- P’tan $. 

As the mean acceleration of a particle is zero, this force component must be 
equal to zero, so that 

tan $ = tan a/tan 9. (12) 

This relation is valid as long as the angle ct is small compared with the angle 
of repose. In  the following, it is assumed that (12) may be used to determine the 
direction of the sediment transport. It should be emphasized that this assumption 
becomes questionable if a large part of the sediment is carried in suspension. 
This restriction is, however, in agreement with the assumption of small sediment 
transport rates already applied. 

Now (12) is applied to the steady and uniform flow in an annular flume with 
a movable bed. Because of the helical motion described above, there will be an 
inward component of sediment transport of magnitude qs tan 6, where 6 is 
determined from (11). However, in the case of steady flow, the net rate of radial 
sediment transport must be zero, as otherwise a stationary bottom cannot be 
attained. Hence, to counterbalance the inward radial transport due to the 
secondary flow, a radial bed slope must develop, giving increasing depths towards 
the outer side wall. Then the inward transport may be balanced by the outward 
component, which is due to the transverse slope of the channel bed. Equilibrium 
occurs for $ = 6, which according to (1 1) and (12) gives 

or 1 Y 
- 21-. -- - 

tanq5dr r 
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The solution of this equation is 

y = c r p ,  where p = 21 tan 4 (14) 

and c is a constant of integration. Equation (13) was found to describe the mean 
bottoms of all the experiments fairly well provided that p was taken equal to 
8, which gives a dynamic friction angle $ = 21’. For comparison, it may be 
mentioned that the angle of repose was measured t o  be 26’. 

4. The perturbation equations 
The uniform flow described above develops a bottom which is a surface of 

revolution given by (14). Experiments demonstrate that this basic flow is 
usually unstable, so that small perturbations will increase. To explain this, a 
stability analysis based on the equations for small perturbations must be carried 
out. 

Because of the complicated nature of the problem, it seems reasonable to 
apply the simplest possible mathematical model that is likely to describe the 
essentials of the flow. Although the instability corresponds to an unsteady flow 
situation, it was found that the changes in the bed form are slow enough for the 
steady-state equations to be applied. Further, it has been assumed that the flow 
may be regarded as ‘gradually varying’, an approximation which has been 
found to be adequate in many similar cases, for instance meandering. This 
implies that only the mean values (over a vertical) of the velocity components, 
Zo and V,, occur in the momentum equation, and the correction factors are taken 
equal to unity. Under these assumptions, the momentum equation has the 
following two Components: 

As before, the suffixes t and b refer to the top and bottom, respectively. In  
the second equation, the friction term is due to the helicity and is of moderate 
magnitude, so that its variations may be neglected. The friction term in (15) 
vanishes for uniform flow but may for non-uniform, gradually varying flow be 
estimated by the following calculation. 

In  the case of non-uniformity, the velocity distribution given by (6) should be 
modified to 

302 
Vg = 2*5&,1n- - 2-5UfJn (1 - LJ, 

‘b 

where the suffixes b and t refer to the bottom and top boundaries, respectively. 
This modification is necessary to give the correct velocity distributions near 
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both boundaries and agrees well with results of Reid (1957). The velocity Qr of 
the upper boundary then becomes 

in which 
Qr = 4 b K b  + U,Kt,  ( 1  6) 

Kb = 2*5In(30y/kb), Kt = 2 . 5 h ( 9 U , , y / ~ ) .  

By integrating (lq, the following important expression is obtained: 

ufb = (v-2'5Uft)/(Kb-2'5). 

From this, U,, may be eliminated by means of (16 ) ,  so that we get an expression 
for the friction velocity along the bed in terms of the mean velocity V :  

q b  = (v- 2*5Qr/Kt) [Kb - 2 4  1 f Kb/Kt)]-', 

which will be applied in the following. In  the same way, we may derive an 
expression for 'I&: 

To establish the momentum equation, it is necessary to calculate the difference 

between the boundary shear stresses by using the expressions derived above. 
Assuming small deviations from the basic flow we find 

qt- q b  = -/?u$u, 
where u is the relative deviation of the true mean velocity from that of the basic 
flow [see ( Z O ) ]  while 

p = 2 [ E)a +2]/[2 - 2 (1 + 31. 
The equation of continuity reads 

a a 
5 (rE,y) + - a0 = 0. 

Finally, if the sediment transport mainly occurs as bed load, the sediment 
continuity equation is 

--(( .a,)+-- 1 848 = ( 1 - e ) -  aY l a  
r ar r as at7 

in which q8 is the circumferential transport rate (volume of sediment substance 
per second per unit width), qsr is its radial component, e is the porosity and t is 
the time. 

The next step in the analysis is the linearization of the equations. It is assumed 
that the original bed is given a small periodic perturbation, which will also 
change the originally uniform velocity field. The following substitutions are 
introduced: 

Y = %(I +7), gh = dh,+ @), (19) 



Instability of $ow in a curved alluvial channel 153 

a suffix zero indicating the unperturbed quantity. For the velocity components 
we write 

58 = V(i+u), ;ii, = vv. (20) 
The quantities 7, u and v are non-dimensional and supposed to be so small that 
second and higher powers may be neglected. V is the mean velocity of the basic 
flow and consequently proportional to f i r :  

V = aQr, (21) 

where a is a factor between 0 and 1. Substitution of (19) and (20) into the flow 
equations and subsequent linearization gives the following result : 

By use of ( i 4 )  and (21) the last two equstions may be rewritten as 

The periodicity of the small perturbation is now introduced by making the 

(25 4 
(25b) 

( 2 5 4  

where w is the angular speed of the perturbation and the integer n is the number 
of periods. Substitution of these expressions into the flow equations and elimi- 
nation of@ by cross-differentiation give the following relation between uo and vo: 

assumption that 
7 = rlo(r) exp [in@ - 4, 
u = uo(r) exp [in(6 - wt) ] ,  

v = vo(r) exp [in(8- wt) ] ,  

u,[4 + ( p  - 3 ) ~ ]  + ruA( i - K )  = ivo ( n + : ) ?  - -t -rvo, (26) 

where a prime denotes differentiation with respect to r and K is an abbreviation 
for the quantity 

Similarly, we get from the continuity equation the relation 

uo = - T o  + (iln) [ (p  + 2)  vo + rv61, 
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which may be used to eliminate uo from (26). This results in the equation 

ia i i 
-r2vl +rv;[(p + 3) u+ b- 21 - +vo- [ ( p  + 2) b -n2 - 41 = by,+ary;, n n  n (28) 

inwhicha= 1-Kandb = 4 + ( p - 3 ) ~ .  
Next we turn to the sediment equation (18), where the linearization is a little 

more complicated. The local value of qs is assumed to vary as the local mean 
velocity to some power m, i.e. 

qs N P ( l + m u )  N P ( l+mu) .  (29) 

According to the previous arguments, the direction of the mean velocity forms 
the angle 6 with the bed shear stress and the angle $ with the direction of the 
sediment transport. Consequently, the radial component of the sediment trans- 
port rate is 

qsr = q,[v + tan($ - @ I *  
Assuming that @ and 6 are small, the substitution of (11) and (12) gives 

If, next, y = yo(l +y) is inferred and linearization is carried out, the expression 
for the radial sediment transport rate becomes 

where the last term disappears because of (13), which is valid for the basic flow. 
The resulting expression is then 

The boundary condition along the two side walls is that the radial component 
of the sediment transport must vanish. As the radial velocity v is also zero 
here, this boundary condition may be expressed as 

When (29) and (30) are inserted in the total transport equation (is), the 
following basic equation is obtained: 

from which uo may be eliminated by means of (27). This gives 

Yo (1 - m - mp) wo - (m - 1)  r.; + (m + 1) 

= iny,[m-w(l - e )  ryo/qs]. (32) 
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5. Solution of the equations 
As the equations are too complicated to allow an exact analytical solution, 

it is necessary to develop a numerical procedure based on the values of the 
physical parameters prevailing in the experiments. From preliminary test series 
it was found that the dynamic friction angle of the bed material was consistently 
about 21°, so that it is possible to evaluate one of the most important parameters: 

p = 21tanq5 N 8. 

The exponent m in the transport relation (29) is extremely difficult to measure. 
At large transport rates m’is about 3 (cf. Meyer-Peter & Muller’s (1948) bed- 
load equation) while its value is extremely large for small transport rates close 
to the threshold of particle motion. As the present investigation is concerned 
with small transport rates, it was decided to take m = 6. The principal results 
are not sensitive to this choice. 

An estimate of the wall roughness led to the values Kb = 11-5 and K ,  = 20, 
but it is, of course, an approximation to apply constant values over the entire 
channel bed . 

The equations were solved by successive approximations, starting with the 
assumed relation 

70 = ao+af(r/b), (33) 

where f is a real function, b is the channel width, while a is a complex quantity. 
Without losing generality a, may be put equal to unity. A graph off is given in 
figure 4. Note that the condition 76 = 0 at the side wall is satisfied. 

When the above specific numerical values of the flow parameters are adopted, 
(28) can be replaced by two simultaneous equations, on separating real and 
imaginary contributions by putting vo = v, + ivi : 

in which the operators L and M are defined by 

d2v dv 
dr2 dr 
d2v 
dr2 

L(vo) = r B 0  + 13r-O + (36 - n2) vo, 

H(v0) = r2-0 + 6r$ dr - 50v0. 

By substitution of some estimated variations of the right-hand sides of (34) and 
subsequent integration, improved variations are obtained. After each iteration, 
the arbitrary constants are determined from the boundary condition that vo 
must vanish at  the side walls. As K is usually a rather small quantity, the first 
estimate of vo may be obtained by putting K = 0, which permits immediate 
integration of (34). Although K is small, it  is of great importance for the stability, 
as K = 0 leads to stability for all the modes investigated. In  the actual calculations, 
it is appropriate to separate both v, and vi into two parts, corresponding to the 
two terms in (33). 
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FIGURE 4. The functionf from (33). 

The next step in the analysis concerns (32), which under the same conditions 
as above can be rewritten in the form 

d = (1 - e )  w s o 4 ,  
where D and qso are the depth and sediment transport rate at the reference dis- 
tance ro. The previously obtained expression for wo and (33) are inserted into the 
right-hand side of this equation. Integration can now be carried out directly, 
and the resulting variation of qo compared with the assumed variation. The 
eigenvalue Po is determined by the boundary condition that 7; should vanish 
at  the side walls. 

w is assumed to be complex, so that w = w,+ iwi. The sign of wi determines the 
stability condition, positive values indicating instability. As long as the per- 
turbations are small, they are known to grow exponentially, the degree of ampli- 
fication being determined by the quantity nui. Hence, of all possible unstable 
modes, the one corresponding to the largest value of the amplification coefficient 
noi will rapidly become dominant. 

6. Comparison with experiments 
A sketch of the experimental set-up is given in figure 5. The annular flume 

has an outer diameter of 2 m and a width of 20 cm. It is covered with an annular 
plate, which can be made to rotate by the electromotor indicated to the left of 
the figure. When the sediment is introduced into the flume and its surface has 
been given the desired shape, water is carefully supplied and the plate brought in 
contact. After each experiment, the cover is removed and the water is let out, 
in some case stepwise, so that the bed-elevation contours become visible (cf. 
figure 6, plate 1). When all the water has been removed, the bed surface can be 
conveniently surveyed by means of a point gauge. 
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I 

FIGURE 6 .  Cross-section of experimental set-up. 

An interesting consequence of the previous analysis is that, according to (la), 
the sediment bed is a surface of revolution, depending on the degree of filling 
(characterized for instance by the maximum depth D)  and on the dynamic 
friction angle 4. A necessary condition for this description to be adequate is, of 
course, that 4 be at least approximately independent of the flow conditions. 

The question of the applicability of (14) has been tested by additional experi- 
ments using two different sand types with grain diameters of 0.25 and 0.75 mm. 
Some typical results are presented in figures 7 (a )  and ( b ) .  

One difficulty is that in most cases the original sand bed is unstable and that 
the formation of sand waves may affect the particle motion and hence the value 
of the dynamic friction angle. However, it is still possible that the mean bed, 
after averaging of the depth over several periods, may be described by (la), 
and this was actually found to be the case, at least to a first approximation. 
The corresponding value of 4 exhibited some variation but was for moderate 
transport rates found to be about 25". 

The form of the mean bed was found to be nearly independent of the speed 
of rotation as long as the particles moved mainly as bed load. Pigure 7 (a )  gives 
an example where the tractive shear was increased by a factor of 5 without 
causing an appreciable change in the transverse slope. When, on the other hand, 
the rotation became so rapid that the particles moved mainly in suspension, the 
bed form changed rather drastically and the bed waves disappeared or were at 
least appreciably reduced. As (14) was derived under the assumption of negligible 
suspension, this result is not surprising. 

It may be relevant to remark that previous investigations of flow in open 
channel bends (Engelund 1974) indicated a value of about 4 = 27'. The agree- 
ment with the present result is significant because the strength of the helicity 
in an open channel is only a fraction of that in Couette flow. 

The conclusion of this investigation is that (14) seems to be applicable at 
moderate transport rates, implying a dynamic angle somewhat smaller than the 
angle of repose. This was also found to be consistent with the artificially low 
density of the sediment used in the main experiment, where the purpose was to 
investigate the growth of the sand waves. 

I n  these experiments, the surface of the sediment was given a shape corres- 
ponding to (14) before the cover was rotated. As explained above, the instability 
gave rise to very regular and sinusoidal disturbances of increasing amplitude. 
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V 

FIGURE 7. Mean bed elevation for different speeds of rotation. (a )  Grain dia- 
meter = 0.25mm; x,  o = 1.3 s-l; 0 ,  o = 2.9 s-l; V, w = 3-7 s-l. (b )  Grain dia- 
meter = 0.75 mm; X ,  w = 1-9 s-l; 0 ,  w = 2.4 s-l; V, o = 3.0 s-l. The curve corre- 
sponds to (14) with 4 = 26'. 

The coarse low-density material was chosen because the large grain size prevented 
the formation of the small surface ripples observed when fine sand is applied. 
These ripples, also produced by flow in straight flumes, have nothing to do with 
the present instability problem. 

Experiments were run with two different maximum depths: D = 4 and 6 cm. 
In the case of smaller depth, the number of periods n was consistently found t o  
be seven as long as the height of the sand waves was small and the undulations 
regular. When the experiment was continued beyond this initial state, the waves 
became irregular and their number decreased to six or five. In  the case of larger 
depth, the initial instability was found to yield six periods, which in the mature 
stage were occasionally reduced to five. 
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FIGURE 8. Amplification coefficient vs. n. 0 ,  D = 4 cm; 0, D = 6 cm. 

FIUURE 9. Comparison between measured (above) and calculated bed-elevation contours. 
The maximum mean depth is 3.8 cm; the number of periods is n = 7. Contour interval 
= l c m .  

These observations can now be compared with the results of the stability 
analysis, as given in figure 8, where the amplification coefficient is plotted against 
the number of periods. As mentioned previously, a positive value of wi indicates 
that the modes considered are in fact unstable. The calculations were carried 
out for the same two depths as in the experiments, and in both cases the maximum 
value occurred for n = 7. For the smaller depth, this agrees with the observations, 
but for the large depth, the observed number is six. 

It is not clear whether this discrepancy is due to inaccuracies in the basic 
assumptions underlying the theory, incorrect estimates of the parameters or 
simply to the fact that the influence of the outer side wall must necessarily 
increase with increasing depth. This influence has been neglected in the analysis, 
which assumes the depth to be small compared with the channel width. 
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As a further test, the calculated eigenfunction has been used to  predict the 
shape of the bed waves for the most unstable mode. Figure 9 gives a comparison 
between the measured and calculated bed-elevation contours. 

The author is indebted to Leif Tegneby for his careful design and execution of 
the necessary experimental equipment and for valuable assistance during the 
measurements. 
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FIGURE 6. Photograph taken after removal of the cover and partial draining 
of the channel. 

ENGELUND (Fucing p .  160) 


